skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Osterberg, Erich"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. Dimethyl sulfide (DMS) is primarily emitted by marine phytoplankton and oxidized in the atmosphere to form methanesulfonic acid (MSA) and sulfate aerosols. Ice cores in regions affected by anthropogenic pollution show an industrial-era decline in MSA, which has previously been interpreted as indicating a decline in phytoplankton abundance. However, a simultaneous increase in DMS-derived sulfate (bioSO4) in a Greenland ice core suggests that pollution-driven oxidant changes caused the decline in MSA by influencing the relative production of MSA versus bioSO4. Here we use GEOS-Chem, a global chemical transport model, and a zero-dimensional box model over three time periods (preindustrial era, peak North Atlantic NOx pollution, and 21st century) to investigate the chemical drivers of industrial-era changes in MSA and bioSO4, and we examine whether four DMS oxidation mechanisms reproduce trends and seasonality in observations. We find that box model and GEOS-Chem simulations can only partially reproduce ice core trends in MSA and bioSO4 and that wide variation in model results reflects sensitivity to DMS oxidation mechanism and oxidant concentrations. Our simulations support the hypothesized increase in DMS oxidation by the nitrate radical over the industrial era, which increases bioSO4 production, but competing factors such as oxidation by BrO result in increased MSA production in some simulations, which is inconsistent with observations. To improve understanding of DMS oxidation, future work should investigate aqueous-phase chemistry, which produces 82 %–99 % of MSA and bioSO4 in our simulations, and constrain atmospheric oxidant concentrations, including the nitrate radical, hydroxyl radical, and reactive halogens. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. This project intends to use the Mount Denali ice core archive to develop the most comprehensive suite of North Pacific fire and summer climate proxy records since about 2500 years before present. Wildfire is a key component of summer climate in the North Pacific where wildfires are projected to increase with continued summer warming. Studies that combine paleorecords of summer climate and wildfire are therefore critically needed, especially in the North Pacific region where fire recurrence rate and decadal-to-centennial scale climate fluctuations occur over longer time periods than are covered by direct observations. The goal of the proposed research is to improve our understanding of relationships between summertime climate and wildfire activity, focusing especially on the Medieval Climate Anomaly (MCA), when regional temperatures were perhaps as warm as the 20th century. Recent advances now permit the measurement of new fire-related (pyrogenic) compounds in ice cores, enabling the development of a robust fire record capable of rigorous comparison with regional paleoclimate reconstructions. 
    more » « less
  3. An industrial-era drop in Greenland ice core methanesulfonic acid (MSA) is thought to herald a collapse in North Atlantic marine phytoplankton stocks related to a weakening of the Atlantic Meridional Overturning Circulation. In contrast, stable levels of marine biogenic sulfur production contradict this interpretation and point to changes in atmospheric oxidation as a potential cause of the MSA decline. However, the impact of oxidation on MSA production has not been quantified, nor has this hypothesis been rigorously tested. Here we present a multi-century MSA record from the Denali, Alaska, ice core, which shows an MSA decline similar in magnitude but delayed by 93 years relative to the Greenland record. Box model results using updated chemical pathways indicate that oxidation by industrial nitrate radicals has suppressed atmospheric MSA production, explaining most of Denali’s and Greenland’s MSA declines without requiring a change in phytoplankton production. The delayed timing of the North Pacific MSA decline, relative to the North Atlantic, reflects the distinct history of industrialization in upwind regions and is consistent with the Denali and Greenland ice core nitrate records. These results demonstrate that multi-decadal trends in industrial-era Arctic ice core MSA reflect rising anthropogenic pollution rather than declining marine primary production. 
    more » « less
  4. Abstract. The Greenland and Antarctic ice sheets are covered in a layer of porous firn. Knowledge of firn structure improves our understanding of ice sheet mass balance, supra- and englacial hydrology, and ice core paleoclimate records. While macroscale firn properties, such as firn density, are relatively easy to measure in the field or lab, more intensive measurements of microstructural properties are necessary to reduce uncertainty in remote sensing observations of mass balance, model meltwater infiltration, and constrain ice age – gas age differences in ice cores. Additionally, as the duration and extent of surface melting increases, refreezing meltwater will greatly alter firn structure. Field observations of firn grain size and ice layer stratigraphy are required to test and validate physical models that simulate the ice-sheet-wide evolution of the firn layer. However, visually measuring grain size and ice layer distributions is tedious, is time-consuming, and can be subjective depending on the method. Here we demonstrate a method to systematically map firn core grain size and ice layer stratigraphy using a near-infrared hyperspectral imager (NIR-HSI; 900–1700 nm). We scanned 14 firn cores spanning ∼ 1000 km across western Greenland’s percolation zone with the NIR-HSI mounted on a linear translation stage in a cold laboratory. We leverage the relationship between effective grain size, a measure of NIR light absorption by firn grains, and NIR reflectance to produce high-resolution (0.4 mm) maps of effective grain size and ice layer stratigraphy. We show the NIR-HSI reproduces visually identified ice layer stratigraphy and infiltration ice content across all cores. Effective grain sizes change synchronously with traditionally measured grain radii with depth, although effective grains in each core are 1.5× larger on average, which is largely related to the differences in measurement techniques. To demonstrate the utility of the firn stratigraphic maps produced by the NIR-HSI, we track the 2012 melt event across the transect and assess its impact on deep firn structure by quantifying changes to infiltration ice content and grain size. These results indicate that NIR-HSI firn core analysis is a robust technique that can document deep and long-lasting changes to the firn column from meltwater percolation while quickly and accurately providing detailed firn stratigraphy datasets necessary for firn research applications. 
    more » « less
  5. Abstract. Carbonyl sulfide (COS) is the most abundant sulfur gas in the atmosphere with links to terrestrial and oceanic productivity. We measured COS in ice core air from an intermediate-depth ice core from the South Pole using both dry and wet extraction methods, recovering a 52 500-year record. We find evidence for COS production in the firn, altering the atmospheric signal preserved in the ice core. Mean sea salt aerosol concentrations from the same depth are a good proxy for the COS production, which disproportionately impacts the measurements from glacial period ice with high sea salt aerosol concentrations. The COS measurements are corrected using sea salt sodium (ssNa) as a proxy for the excess COS resulting from the production. The ssNa-corrected COS record displays substantially less COS in the glacial period atmosphere than the Holocene and a 2 to 4-fold COS rise during the deglaciation synchronous with the associated climate signal. The deglacial COS rise was primarily source driven. Oceanic emissions in the form of COS, carbon disulfide (CS2), and dimethylsulfide (DMS) are collectively the largest natural source of atmospheric COS. A large increase in ocean COS emissions during the deglaciation suggests enhancements in emissions of ocean sulfur gases via processes that involve ocean productivity, although we cannot quantify individual contributions from each gas. 
    more » « less
  6. Abstract. Investigating North Pacific climate variability during warmintervals prior to the Common Era can improve our understanding of thebehavior of ocean–atmosphere teleconnections between low latitudes and theArctic under future warming scenarios. However, most of the existing icecore records from the Alaskan and Yukon region only allow access to climateinformation covering the last few centuries. Here we present asurface-to-bedrock age scale for a 210 m long ice core recovered in 2013from the summit plateau of Begguya (Mt. Hunter; Denali National Park,Central Alaska). Combining dating by annual layer counting with absolutedates from micro-radiocarbon dating, a continuous chronology for the entireice core archive was established using an ice flow model. Calibrated14C ages from the deepest section (209.1 m, 7.7 to 9.0 ka cal BP)indicate that basal ice on Begguya is at least of early Holocene origin. Aseries of samples from a shallower depth interval (199.8 to 206.6 m) weredated with near-uniform 14C ages (3 to 5 ka cal BP). Our resultssuggest this may be related to an increase in annual net snow accumulationrates over this period following the Northern Hemisphere Holocene ClimateOptimum (around 8 to 5 kyr BP). With absolute dates constraining thetimescale for the last >8 kyr BP, this paleo-archive will allowfuture investigations of Holocene climate and the regional evolution ofspatial and temporal changes in atmospheric circulation and hydroclimate inthe North Pacific. 
    more » « less
  7. Abstract US maize and soy production have increased rapidly since the mid-20th century. While global warming has raised temperatures in most regions over this time period, trends in extreme heat have been smaller over US croplands, reducing crop-damaging high temperatures and benefiting maize and soy yields. Here we show that agricultural intensification has created a crop-climate feedback in which increased crop production cools local climate, further raising crop yields. We find that maize and soy production trends have driven cooling effects approximately as large as greenhouse gas induced warming trends in extreme heat over the central US and substantially reduced them over the southern US, benefiting crops in all regions. This reduced warming has boosted maize and soy yields by 3.3 (2.7–3.9; 13.7%–20.0%) and 0.6 (0.4–0.7; 7.5%–13.7%) bu/ac/decade, respectively, between 1981 and 2019. Our results suggest that if maize and soy production growth were to stagnate, the ability of the crop-climate feedback to mask warming would fade, exposing US crops to more harmful heat extremes. 
    more » « less
  8. The SUMup database is a compilation of surface mass balance (SMB), subsurface temperature and density measurements from the Greenland and Antarctic ice sheets. This 2023 release contains 4 490 442 data points: 1 778 540 SMB measurements, 2 706 413 density measurements and 5 489 subsurface temperature measurements. This is respectively 1 477 132, 420 825 and 4 715 additional observations of SMB, density and temperature compared to the 2022 release. This new release provides not only snow accumulation on ice sheets, like its predecessors, but all types of SMB measurements, including from ablation areas. On the other hand, snow depth on sea ice is discontinued, but can still be found in the previous releases. The data files are provided in both CSV and NetCDF format and contain, for each measurement, the following metadata: latitude, longitude, elevation, timestamp, method, reference of the data source and, when applicable, the name of the measurement group it belongs to (core name for SMB, profile name for density, station name for temperature). Data users are encouraged to cite all the original data sources that are being used. Issues about this release as well as suggestions of datasets to be added in next releases can be done on a dedicated user forum: https://github.com/SUMup-database/SUMup-data-suggestion/issues. Example scripts to use the SUMup 2023 files are made available on our script repository: https://github.com/SUMup-database/SUMup-example-scripts. 
    more » « less